29) Polymer ultrastructure governs AA9 Lytic Polysaccharide MonoOxygenases functionalization and deconstruction efficacy on       cellulose nano-crystals. S. Magri, [et. al.] D. Cannella*, Bioresource Technology, 2021.

28) A review on the potential of filamentous fungi for microbial self-healing of concrete.
      A. Van Wylick et al., Fungal Biology and Biotechnology, 2021, 

27) Producing value-added molecules from organic bioresources via Photo-BioCatalytic processes.

      S. Magri and D. Cannella*, 2021, Springer book chapter, doi: 10.1007/978-981-16-6162-4

26) Combining pieces: a thorough analysis of light activation boosting power and co-substrate preferences for the

       catalytic efficiency of lytic polysaccharide monooxygenase Mt LPMO9A.

       AGV Sepulchro, [et. al.] I. Polikarpov. Biofuel Research Journal, 2021, doi: 10.18331/BRJ2021.8.3.5

25) LPMO-oxidized cellulose oligosaccharides evoke immunity in Arabidopsis conferring resistance towards necrotrophic
     fungus B. cinerea. M. Zarattini, M. Corso, ...., and D. Cannella*. Communication Biology by Nature, 2021, 727,


24) On the roles of AA15 lytic polysaccharide monooxygenases derived from the termite Coptotermes gestroi.
      JPL Franco Cairo et al. Journal of Inorganic Biochemistry, 2020, doi 10.1016/j.jinorgbio.2020.111316

23) β-hexachlorocyclohexane: a small molecule with a big impact on human cellular biochemistry.

      E. Rubini et al; Biomedicines, 2020, 8(11), 505; https://doi.org/10.3390/biomedicines8110505

22) Every cloud has a silver lining: how abiotic stresses affect gene expression in plant pathogen-interactions.

      M. Zarattini et al; Journal of Experimental Botany, 2020, eraa531, https://doi.org/10.1093/jxb/eraa531

21) A fast and easy strategy for lytic polysaccharide monooxygenase-cleavable His6-Tag cloning, expression, and purification.

       M. Kadowaki, […] D Cannella*, Enzyme and Microbial Technology, 2020, 109704, 10.1016/j.enzmictec.2020.109704

20) Photobiocatalysis by a Lytic Polysaccharide Monooxygenase Using Intermittent Illumination.

      Blossom et al; ACS Sustainable Chemistry & Engineering, 2020, 8, 25, 9301–93, 10.

19) The role of microbiota in tissue repair and regeneration.
     Shavandi et al., Journal of Tissue Engineering and Regenerative Medicine, 2020 doi:10.1002/term.3009

18) Laccase-derived lignin compounds boost cellulose oxidative enzymes AA9.

      Brenelli, […] D Cannella*, Biotechnology for Biofuels, 2018, 11, 10. doi:10.1186/s13068-017-0985-8

17) Light-Induced Electron Transfer Protocol for Enzymatic Oxidation of Polysaccharides.

      D Cannella*, Cellulases, 2018, 247-253


16) On the formation and role of reactive oxygen species in light-driven LPMO oxidation of phosphoric acid swollen cellulose.    

      Mollers et al., Carbohydrate research, 2017, 448, 182-186. doi:10.1016/j.carres.2017.03.01

15) Light-driven system and methods for chemical modification of an organic substrate;

      Cannella,  D., Möllers,  B.  K., & Felby,  C; 2017, WO-US-EU-Patent WO2017009431A1

14) Toward a sustainable biorefinery using high-gravity technology;

      Xiros et al., Biofuels, Bioproducts and Biorefining,  2016, 11(1), 15-27.

13) Light-driven oxidation of polysaccharides by photosynthetic pigments and a metalloenzyme;

      D. Cannella* et al.,  Nature Communications, 2016, 7, 11134. doi:10.1038/ncomms11134

12) Enzymatic cellulose oxidation is linked to lignin by long-range electron transfer.

      Westereng, B. & D Cannella, et al., Nature Scientific Reports, 2015, 5, 18561. doi:10.1038/srep18561

11) Carbohydrates and thermal properties indicate a decrease in stable aggregate carbon following forest colonization of         

      mountain grassland; Guidi, C et al., Soil biology & biochemistry, 2015, 86


10) Lignocellulose pretreatment technologies affect the level of enzymatic cellulose oxidation by LPMO;

      Rodriguez-Zuniga,  U, & D. Cannella*, et al.,  Green chemistry, 2015, 17.

9) Cellobiohydrolase and endoglucanase respond differently to surfactants during the hydrolysis of cellulose.

    Hsieh CW, et al., Biotechnology for Biofuels, 2015, 8, 52. doi:10.1186/s13068-015-0242-y

8) Influence of high gravity process conditions on the environmental impact of ethanol production from wheat straw.

    Janssen M. et al., Bioresource technology, 2014, 173, 148-158. doi:10.1016/j.biortech.2014.09.044

7) PEI detoxification of pretreated spruce for high solids ethanol fermentation.

    D. Cannella, PV. Sveding,  H. JørgensenApplied energy, 2014, 132.

6) Cellulase inhibition by high concentrations of monosaccharides.

    Hsieh, C.-W., et al., Journal of agricultural and food chemistry, 2014, 62(17), 3800-3805. doi:10.1021/jf5012962


5) Cyanobacterial biomass as carbohydrate and nutrient feedstock for bioethanol production by yeast fermentation.

    Mollers, B. et al. Biotechnology for Biofuels, 2014, 7, 64. doi:10.1186/1754-6834-7-64


4) Do new cellulolytic enzyme preparations affect the industrial strategies for high solids lignocellulosic ethanol production?,                 D. Cannella, & Jørgensen,  H., Biotechnology and bioengineering, 2014, 111(1), 59-68. doi:10.1002/bit.25098

3) Obtaining nanofibers from curauá and sugarcane bagasse fibers using enzymatic hydrolysis followed by sonication.

    A. De Campos  et al., Cellulose, 2013, 20(3), 1491-1500.


2) Production and effect of aldonic acids during enzymatic hydrolysis of lignocellulose at high dry matter content.

    D. Cannella*, et al., Biotechnology for Biofuels, 2012, 5(1), 26. doi:10.1186/1754-6834-5-26


1) Yeast viability for second generation ethanol production from olive oil wastes.

    D. Cannella, CV Peroni, M. Bravi; Journal of biotechnology, 2010, 150(158-159).